B.E. Electronics & Comm. Engg:Robotics

Thapar University
In Patiala

Price on request
You can also call the Study Centre
17523... More
Want to speak to an Advisor about this course?
Students that were interested in this course also looked at...
See all

Important information

  • Bachelor
  • Patiala
  • Duration:
    4 Years

Important information

Where and when

Starts Location
On request
Thapar University P.O Box 32, 147004, Punjab, India
See map

Course programme

First Year: Semester I

Mathematics I
Engineering graphics
Computer Programming
Solid Mechanics
Communication Skills

First year: Semester II

Mathematics II
Manufacturing Process
Electrical and Electronic Science
Organizational Behavior

Second year: Semester I

Numerical and Statistical Methods
Measurement Science and Techniques
Electromagnetic Fields
Semiconductor Devices
Signals and Systems
Digital Electronic Circuits
Human Values, Ethics and IPR

Second year: Semester II

Optimization Techniques
Analog Electronic Circuits
Networks and Transmission Lines
Electrical Engineering Materials
Analog Communication Systems
Data Structure and Information Technology
Environmental Studies

Third year: Semester I

Digital Signal Processing for Communications
VLSI Circuit Design
Digital Communication Systems
Microelectronics Technology
Linear Integrated Circuits and Applications
Summer Training(6 weeks)

Third year: Semester II

Project Semester
Industrial Training(6 weeks)

Fourth year: Semester I

Antenna and Wave Propagation
Modern Control Engineering
Wireless and Mobile Communication Systems
Microwave Engineering
Engineering Economics

Fourth year: Semester II

Optical Communication Systems
Advanced Communication Systems
HDL Based Digital Design
Total Quality Management
Minor Project


Basic Concepts in Robotics: Automation and robotics, robot anatomy, basic structure of robots, resolution, accuracy and repeatability

Classification and Structure of Robotic System: Point to point and continuous path systems. Control loops of robotic systems, the manipulators, the wrist motion and grippers.

Drives and Control Systems: Hydraulic systems, Dc servo motors, basic control systems concepts and models, control system analysis, robot activation and feed back components. Positional and velocity sensors, actuators. Power transmission systems, robot joint control design.

Robot arm Kinematics and Dynamics: The direct kinematics problem, the inverse kinematics solution , Lagrange-Euler formation ,generalized D'Alembert equations of motion, Denavit Hartenberg convention and its applications.

Sensors in robotics: Tactile sensors, proximity and range sensors, force and torque sensors, uses of sensors in robotics.

Vision Systems: Vision equipment, image processing, concept of low level and high level vision.

Robot Programming: Method of robots programming, lead through programming methods, a robot programs as a path in space ,motion interpolation, WAIT, SIGNAL and DELAY commands, branching capabilities and limitation of lead through methods.

Robot Language: The textual robot languages , generations of robot programming languages , robot language structure, constants, variables and other data objects. Motion commands, end effectors and sensor commands computations, programme control and subroutines, communication and data processing ,monitor mode commands. Introduction to artificial intelligence.

Achievements for this centre

Students that were interested in this course also looked at...
See all